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Improving social skills in children with ASD using  
a long-term, in-home social robot
Brian Scassellati1*, Laura Boccanfuso2†‡, Chien-Ming Huang1†§, Marilena Mademtzi2†,  
Meiying Qin1†, Nicole Salomons1†, Pamela Ventola2, Frederick Shic2||

Social robots can offer tremendous possibilities for autism spectrum disorder (ASD) interventions. To date, most 
studies with this population have used short, isolated encounters in controlled laboratory settings. Our study fo-
cused on a 1-month, home-based intervention for increasing social communication skills of 12 children with ASD 
between 6 and 12 years old using an autonomous social robot. The children engaged in a triadic interaction with a 
caregiver and the robot for 30 min every day to complete activities on emotional storytelling, perspective-taking, 
and sequencing. The robot encouraged engagement, adapted the difficulty of the activities to the child’s past per-
formance, and modeled positive social skills. The system maintained engagement over the 1-month deployment, 
and children showed improvement on joint attention skills with adults when not in the presence of the robot. 
These results were also consistent with caregiver questionnaires. Caregivers reported less prompting over time 
and overall increased communication.

INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelopmental condition 
characterized by social interaction and communication deficits and 
the presence of restricted, repetitive patterns of behavior (1). Children 
and adults with ASD often have difficulty in responding to social 
overtures, recognizing the emotional states of others from visual or 
auditory cues, and understanding the importance of gaze as a social cue 
(2). Therapies are diverse, but are typically time-, resource-, and labor-
intensive, and can put substantial strain on families and caregivers (3).

Technology-based interventions, and robotics in particular, for 
ASD have been seen as a potential approach for augmenting the ef-
forts of families and clinicians to provide on-demand, personalized, 
social skills training (4). The robots envisioned by these efforts are 
part of a new field called socially assistive robotics, which aims to 
construct systems that support social and cognitive growth by using 
social rather than physical means (5–7). These robots share charac-
teristics of educational robots, which attempt to convey information 
typically via a tutor-student relationship (8), and rehabilitation robots, 
which provide structured physical therapy for deficits such as stroke 
and paralysis (9).

Exploratory studies from dozens of research groups have shown 
that many individuals with ASD enjoy interacting with robots and, 
in many cases, even demonstrate more appropriate social behaviors 
with robots than they do with peers or caregivers (10, 11). These 
initial exploratory studies focused on short interactions, spanning 
tens of minutes or less, under controlled laboratory or clinical con-
ditions, often involving sample sizes of five children or fewer, and 
exclusively on robot-directed behavior (7). Although these studies 
generated considerable excitement, they held little clinical value. 

Results tended to fade with repeated exposures and may have been 
the result of novelty, appropriate control conditions were rarely 
considered, and experiments failed to demonstrate learning that 
generalized to human-directed actions (12). A few studies did ex-
amine longer-term interactions (13) or demonstrated improved 
adult-directed social behavior (14), but none was able to demon-
strate skill acquisition that could be considered clinically meaning-
ful that generalized beyond the specific robot encounter.

We report here a demonstration of directly assessed improve-
ments in social skills in children with ASD after an in-home, 
1-month intervention in which daily social skills games were con-
ducted by an autonomous, socially assistive robot (Fig. 1). This study 
differs from previous work in this domain in four important aspects. 
First, this study used a fully autonomous robot system that operates 
for a 1-month deployment duration with no adjustments made by 
clinical or research staff. Many socially assistive robots still operate 
under teleoperative control, because autonomous operation for this 
duration is a substantial challenge in the robotics community even 
when static program requirements are used throughout the deploy-
ment (6). Second, unlike previous work where predefined protocols 
are followed explicitly (15), the system used here must adapt to the 
strengths and weaknesses of the individual child by changing the 
difficulty of individual tasks based on the child’s preferences and 
performance. Because individuals with ASD have substantial indi-
vidual differences in the type and severity of their social skill defi-
cits, the need to adapt to an individual child is essential to enabling 
a positive learning outcome. Further, the interaction between the 
need for autonomy and the need for adaptation creates additional 
technical challenges. Third, this study provided therapy directly in 
homes with a fully autonomous robot. Whereas clinical and labora-
tory spaces represent known environmental conditions that can be 
controlled or explicitly planned for, the unconstrained home envi-
ronment requires more complex sensing and behavioral routines to 
deal with greater variation in environmental conditions. Last, this 
study focused primarily on demonstrations of clinically meaningful 
measures of performance using standard evaluation metrics that are 
conducted by an independent assessor away from the robot. This 
represents a challenging evaluation standard, because a child must 
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not only learn a skill while practicing with the robot but also be ca-
pable of generalizing that skill to interactions with an adult in an 
environment that differs from the practice games used by the robot.

RESULTS
Our robot-assisted intervention included a 30-min session every day 
for 30 days and involved triadic interactions among the social robot, 
the child, and the caregiver, providing opportunities for the child to 
interact and share experiences with the caregiver (Fig. 2). The robot 
modeled social gaze behaviors, such as making eye contact (Fig. 3) 
and sharing attention throughout the sessions, and provided feed-
back to and guided the participants in six interactive games. The six 
games targeted different social skills, including social and emotion-
al understanding, perspective-taking, and ordering and sequencing 
(Fig. 4). Each session began with the robot telling a daily story to 
engage the participants. The session continued with three games, 
which varied from day to day, and concluded with a caregiver sur-
vey, where the caregivers rated their observations of the child’s so-
cial communication skills.

Participant information
Fourteen families with a child with ASD enrolled in this study. Two 
families withdrew, one due to unrelated health problems of a care-

giver and one due to technical difficulties with the robot installation. 
Among the 12 families who finished the study, five of the children 
with ASD were females and seven were males. Caregivers reported 
that all 12 children identified racially as white and 4 of the 12 as 
Hispanic or Latino. These participants’ age ranged from 6 to 12 years 
old [mean (M) = 9.02, SD = 1.41]. All had nonverbal intelligent quo-
tient scores of ≥70 as determined by the Differential Ability Scales 
(DAS; M = 94.17, SD = 20.06) (16). Diagnosis of ASD was based on 
standard-in-field clinical best-estimate (CBE) diagnosis by licensed 
clinical psychologists and/or speech-language pathologists with exten-
sive experience in autism diagnosis. Measures used in the diagnostic 
process included the Autism Diagnostic Interview–Revised (ADI-R) 
(17) caregiver interview and the Autism Diagnostic Observation 
Schedule (ADOS) (18) semistructured play observation. Scores on 
the ADI-R and the ADOS reflect the presence of autism symptoms, 
with higher scores reflecting greater autism severity. The ADI-R is 
broken down into four domains: reciprocal social interactions (M = 17.64, 
SD = 6.98; cutoff for ASD, 10); communication (M = 16.36, SD = 4.74; 
cutoff for ASD, 8); restricted, repetitive, and stereotyped behaviors 
(M = 6.00, SD = 1.41; cutoff for ASD, 3); and history of early abnormal 
development (M = 3.44, SD = .73; cutoff for ASD, 1). The ADOS yields 
outputs including a calibrated severity score [M = 7.08, SD = 2.02; 
cutoff for ASD (scale from 1 to 10), 4]. All participants, in addition 
to receiving a CBE of ASD, scored above the ASD cutoff on either 
the ADOS or the ADI-R.

All participants were recruited from a large database of children 
with ASD who have either participated in previous research studies 
with our laboratory or expressed interest in participation. Eligible 
families were contacted via email to inquire about their interest in 
participating. Given the scope of the project, the first 12 eligible 
families were enrolled. Inclusionary criteria were (i) age between 4 
and 12 years old, (ii) good medical health, (iii) cooperative with 
testing, (iv) English is a language spoken in the family, and (v) hav-
ing been diagnosed with ASD and meet the characterization cutoffs 
described above. Exclusionary criteria were (i) a fragile health status 
and (ii) suspected or diagnosed hearing loss or visual impairment or 
diagnosed neurological abnormality significantly affecting visual or 
auditory acuity.

All children in the study were enrolled in school programming 
full time and received intensive special education services as consistent 
with the state standards for educating children with ASD. Because 
the scope and form of these services and therapies varied substan-
tially across participants based not only on their individual needs but 
also on family preferences and local resource availability, we used a 
single-subject withdrawal design (ABA) that allowed each child to 
serve as their own control (see Materials and Methods for details). 
Caregivers were instructed to maintain consistent intervention ser-
vices during their participation in the study.

Engagement and skills performance
A total of 127 hours of data was collected from the interaction be-
tween the 12 children, the robot, and their caregivers. These data 
included video and audio data, head orientation of both child and 
caregiver, interaction logs containing the robot utterances and ac-
tions, game logs for the tablet-based games, and caregiver survey re-
sponses. Because our primary study design was focused on showing 
the efficacy of this intervention, we focus in this paper on the analysis 
of child social performance as measured by game performance, care-
giver reports, and clinical measures.

Fig. 1. Robot-assisted intervention system. Our system consists of a social robot, 
touch screen monitor, and two RGB cameras. The system supports triadic interac-
tions between the robot, the child, and the caregiver. Software running on the per-
ception computer uses an elevated camera to track both the child’s and caregiver’s 
attentional foci, whereas the other camera records the intervention session (Fig. 2). 
The main computer controls the flow of the intervention and the robot’s behavior 
to ensure presentation of coherent, meaningful intervention.
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The children combined initiated a total of 653 games with the 
robot, which resulted in 540 complete games for analysis. (Games that 
were shortened because of the end of time in the session were not 
considered for analysis.) On average, each child performed 23.25 ses-
sions with the robot across the month, and each session lasted, on 

average, for 27 min and 42 s. After a month of interact-
ing with the robot on a daily basis, the robot was able to 
maintain engagement with the child during the interac-
tions: Children played with the robot for an average of 
27 min during the first five sessions and an average of 
25 min during the last five sessions.

The robot adapted the difficulty of each individual 
game based on the child’s history of performance in each 
skill set. On the emotion-understanding game “Story,” 
86% of children reached the most difficult level of the 
game by the last session. On the perspective-taking games, 
58 and 100% of children reached the highest level on 
“Rocket” and “House,” respectively. On the sequencing 
and ordering game “Train,” 67% of the children reached 
the highest level. The “Spaceship” and “Traveler” games 
used only a single difficulty level and were excluded from 
this analysis.

Binomial generalized linear mixed models (Fig. 5) 
were used to model the level attained by children as a 
proportion of the maximum possible level as a function 
of the specific game and session number. Game and ses-
sion number were included as both fixed and random 
effects. Likelihood ratio tests on the resultant model 
indicated significant main effects of game, session, and 
their interaction (all P < 0.001). In terms of overall per-
formance (i.e., intercept) and gains over sessions (i.e., 
slope), the House game was easier than other games [in-
tercept, slope: P = 0.001, P = 0.030 (versus Story); P < 
0.001, P < 0.001 (versus Rocket); P = 0.014, P = 0.030 
(versus Train)].

Joint attention
Performance on the joint attention probe was measured 
and recorded at four time points: (i) T0, 30 days before 
intervention began; (ii) T1, on the first day of robot in-
tervention; (iii) T2, on the last day of intervention; and 
(iv) T3, 30 days after the end of the intervention. The 
difference between time points T0 and T1 was computed 
to measure change in joint attention during a period of 
time with no robot intervention and is denoted as the 
pretest. The difference between time points T1 and T2 
was calculated to measure joint attention changes result-
ing from the robot-administered intervention and is de-
noted as the test phase. Last, the difference between time 
points T1 and T3 was evaluated to measure the stability of 
any changes recorded during the robot-administered in-
tervention and is denoted as the posttest.

Two participants were excluded for lack of data at 
one or more time points. Another participant was ex-
cluded for being out of the age range in which the task 
was normed (7 to 12 years of age). Group means were as 
follows: for T0, M = 16.89 and SD = 4.46; for T1, M = 
15.67 and SD = 3.81; for T2, M = 20.89 and SD = 3.79; 
and for T3, M = 18.22 and SD = 5.02. A linear mixed 

model with compound symmetry repeated covariance effects in-
dicated a significant time point effect [F(3,24) = 5.03, P = 0.008]. 
Planned comparisons showed that, although no pretest or posttest 
effect was observed (T1 − T0, P = 0.395; T3 − T1, P = 0.083), joint at-
tention improvements occurred in the test phase (T2 − T1, P = 0.001; 

Fig. 2. A typical interaction between the robot, the child, and the caregiver during our de-
ployment. Our robot system was designed to engage and facilitate interactions between the 
child and the caregiver, therefore providing opportunities for the child to practice social skills in 
a fun, natural way.

Fig. 3. Robot-initiated joint attention. The robot models appropriate social gaze behavior 
by demonstrating context-contingent gaze and facilitates mutual gaze and experience sharing 
between the child and the caregiver. When the child is engaged with the robot (A), the robot di-
rects the child’s attention to relevant task content on the screen (B). As the child’s attention shifts 
to the robot-directed focus on the screen, the robot then attempts to redirect gaze to the caregiv-
er (C) in the hope of redirecting the child’s visual attention to the caregiver (D). (These demonstra-
tion images were recreated in the laboratory to show both robot and child behavior because this 
perspective was not recorded by the deployed system.)
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Fig. 6). Test phase changes were negatively associated with nonver-
bal reasoning performance on the DAS [r(9) = −0.750, P = 0.020]. 
These results are consistent with greater joint attention gains made 
by children with lower nonverbal ability. Exploration of relation-
ships between baseline nonverbal ability and average baseline (T0 
and T1) joint attention performance indicated a strong positive re-
lationship [r(9) = 0.831, P = 0.005], suggesting that children with 
lower nonverbal reasoning skills had more capacity to grow in 
terms of joint attention skills. Joint attention performance at T1 
was also positively Pearson’s correlated with modeled participant 
overall performance on the House [r(9) = 0.702, P = 0.035] and 
Story [r(9) = 0.705, P = 0.034] games, suggesting shared variance in 
performance.

Caregivers’ survey
Caregivers completed an on-screen survey immediately after each 
day’s intervention session during the test phase. In all but one fam-
ily, these interactions were conducted with the same caregiver (one 
father, one grandmother, and nine mothers).

The survey consisted of five-point 
Likert scale ratings. The questions were 
grouped into two categories: questions 
on how children interacted with care-
givers during the past 24 hours, parallel 
questions about interactions with other 
people, and one final question regard-
ing engagement. We compared the rat-
ings scored by the caregivers on the first 
day and the last day of interventions with 
paired sample t tests. All 12 caregivers’ 
responses were included in the analysis.

Caregivers reported increased social 
skill performance between their child 
and themselves, including more eye con-
tact [t(11) = −2.462, P = 0.03] with them on 
the last day of the intervention (M = 3.75, 
SD = 1.06) compared with the first day 
(M = 3.00, SD = 0.00), more attempts to 
initiate communication [t(11) = −2.930, 
P = 0.014] with them on the last day (M = 
4.08, SD = 1.00) than on the first day (M = 
3.17, SD = 0.39), and more frequent re-
sponses to communication bids from the 
caregiver [t(11) = −3.000, P = 0.012] on 
the last day (M = 3.83, SD = 0.94) than on 
the first day (M = 3.08, SD = 0.29; Fig. 7A).

Caregivers also reported increased social skill performance be-
tween their child and other people, including more eye contact [t(11) = 
−3.447, P = 0.005] with other people on the last day of the intervention 
(M = 3.83, SD = 0.83) when compared with the first day (M = 3.08, 
SD = 0.29), more attempts to initiate communication [t(11) = −3.527, 
P = 0.005] with other people on the last day (M = 3.91, SD = 0.90) 
than on the first day (M = 3.00, SD = 0.00), and more frequent re-
sponses to communication bids from other people [t(11) = −3.458, 
P = 0.005] on the last day (M = 3.75, SD = 0.75) than on the first day 
(M = 2.91, SD = 0.29; Fig. 7B).

Last, caregivers were asked daily to rate how easy it was to engage 
their child with the robot therapy session. To confirm that the con-
tinued length of engagement was not solely a result of compliance to 
the protocol instruction, we modeled the engagement rating with a 
cumulative link mixed model fitted with an adaptive Gauss-Hermite 
quadrature approximation as a function of day with random partici-
pant effects. This model revealed no significant effect of day on en-
gagement (P = 0.822). This suggests that participant engagement did 
not change in a systematic fashion throughout the study.

Fig. 4. Screenshots of social skills games. A set of interactive games were developed to allow children with ASD to practice social skills through play. The games were 
designed to support interactions between the caregiver and the child and between the robot and the child. The games targeted three social skills, including social and 
emotional understanding (A) (Story), perspective-taking (B) (Rocket), and ordering and sequencing (C) (Train).

Fig. 5. Proportion of maximum level achieved as a function of game session. Curves were modeled in a binomial 
generalized linear mixed model with session and game as fixed and random effects. The 95% confidence intervals are 
shown. Children advanced in the level of each game when they achieved over 75% of correct answers and regressed 
a level when giving less than 25% correct answers. When achieving between 25 and 75% of the correct answers, the 
children would remain at the same level.
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DISCUSSION
The potential benefit of a socially assistive robot lies in the ability to 
provide personalized, on-demand, and structured cognitive or social 
support to augment the efforts of clinicians, teachers, and families. 
In the ideal case, robots could provide personalized support, when-
ever and wherever needed, and could be capable of producing lasting 
enhancements in social and communicative skills not only in human-
robot interactions but also in human-human interactions (4). The 
system presented here takes steps in this direction beyond the current 
state of the art but also does not yet live up to all of these grand visions. 
We focus our discussion around the points in which the current work 
makes substantial improvements and also describe the limitations 
and areas requiring continued focus as this field progresses.

Autonomous interaction
Our deployed robots operated autonomously without any experi-
menter intervention for a total of 127 hours over 279 sessions. Care-
givers contacted our 24/7 help line a total of eight times: six times for 
confirmation that they were using the system correctly, which required 
no action from our team, and two times for a technical issue that was 
prompted by the sudden disappearance of an online software library, 
which required a software update and was resolved quickly. Robot-
assisted autism intervention in previous studies was mostly short epi-
sodic interactions that rarely lasted more than 30 min (14, 19) and 
usually required experimenters to supervise robot-directed actions 
[although see (20, 21) for exceptions]. Moving from teleoperated to 
autonomous interactions presents substantial challenges in computa-
tional perception and robot control to create meaningful therapeutic 
training. Although challenging, increasing robot autonomy in assisted 
therapy has potential to reduce therapists’ cognitive load and ensures 
consistent therapy for the children with autism (21). Our system demon-
strated the possibility and potential of autonomous robot interventions 
for autism, which would enable the implementation and application 
of robot-assisted intervention at a large scale in various environments, 
accelerating us toward the goal of achieving clinical significance.

Adaptive intervention
Sustaining engagement with participants is key to effective interven-
tions. Repetitive and unchallenging tasks are likely to bore partici-
pants, who then would disengage from the intervention and miss 
opportunities to practice and improve on targeted skills. As informed 
by the challenge point theory (22), optimal learning occurs when 
the task is neither too easy nor too difficult. Our system sought to 
keep the participating children challenged and adapted the difficulty 
level of practice games to the children’s skill performances as mea-
sured in the games. This adaptation allowed the children to practice 
and to improve the target skills at their own pace. Our results 
confirmed that the children continued to engage with our system 
throughout the test phase. We speculate that such engagement with 
our robot-assisted intervention was crucial to the observed improve-
ments in the children’s social skills.

Deployment in uncontrolled environments
Deployment of robotic systems outside controlled laboratory set-
tings is challenging. Our deployment needed to address various envi-
ronmental constraints and to meet different human considerations. 
For example, the setup location of our system was constrained by 
electrical power, network connectivity, and family preferences. For 
instance, one child was particularly sensitive to light; therefore, our 
system had to be set up in a dimmed room, which created additional 
challenges for our perception system. Furthermore, our deployment 
needed to accommodate other family members’ needs, especially the 
participating child’s siblings. We provided robotic toys to the sib-
lings, so that they would not interrupt daily intervention sessions. 
We also made the operation of the system user-friendly by automat-
ing startup procedures and by providing a simple checklist to ensure 
that caregivers would feel comfortable operating the systems on 
their own on a daily basis. These challenges, constraints, and con-
siderations are unique to field deployment of robotic systems aim-
ing to interact with nonspecialist users every day over a long period 
of time. Yet, meeting these requirements is a practical necessity for 
the integration of robots into our environments to provide daily 
support.

Contributions of the social robot
Although the focus of this study is not to understand the specific 
influence that any of the individual components of our system 
(including the robot, tablet-based games, perception system, etc.) have 
on our robot-mediated intervention, we believe that the social robot 
contributed positively to the observed behavior based on three converg-
ing lines of research. First, in triadic interactions between a child, an 
adult, and a third interaction partner, children with ASD demonstrate 
more social behavior toward the adult when the third interaction part-
ner is a robot rather than a tablet-based game or another adult (14). 
Second, the embodiment of the robot provides necessary affordance to 
convey gaze cues that are central to our behavioral intervention. Known 
as the Mona Lisa gaze effect (23), agents on a flat screen are limited in 
accurate communication of gaze directionality. Third, in tutoring in-
teractions with both adults and typically developing children, physi-
cally embodied robots increase learning outcomes (24, 25), increase 
compliance to instructions (25), and increase user engagement during 
the interaction (26, 27) over screen-based agents. Nonetheless, we 
acknowledge that, in this study, the impact of the robot (or any other 
system component) cannot be measured independently. We pres-
ent this as a limitation of this study and an area for future work.

Fig. 6. Result of joint attention assessment. Probe scores for the child at four 
different time points: 30 days before the robot intervention started, on the start 
day of the robot intervention, on the last day of the robot intervention, and 30 days 
after the end of the robot intervention. There was a significant increase in joint at-
tention scores when comparing before the robot intervention and after it. n.s., not 
significant; *P < 0.05. Error bars indicate SE.
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Improvements in caregiver-reported social behavior
Over the month of the robot-based intervention, caregivers reported 
improved social behavior directed both toward themselves and to-
ward others in areas including eye contact, initiation of communi-
cation, and responses to communication. The change in reported 
behavior on the caregiver survey could be, in part, related to the 
caregiver attending more to the child’s social communication skills. It 
is unlikely that the change is due solely to this increased focus given 
the nature of the sample; caregivers of children with ASD provide 
ongoing support to their children in this area and generally monitor 
social communication development.

Improvements in clinical measures
Our results also showed improvements of children’s joint attention 
in the absence of the robot, indicating that the children were able to 
demonstrate greater skill in the context of human interactions. These 
results are independent of the caregiver reports and are not subject 

to the same limitations. These results 
advanced and differed substantially from 
previous research in robot-assisted au-
tism therapy, where behavioral improve-
ments in children with ASD were mostly 
documented in the context of robot-
directed interactions (20). Successful 
demonstration of improvement in hu-
man interactions is the ultimate goal of 
robot-assisted intervention, evolving be-
yond the mediation and scaffolds that 
assistive robots offer during interactions 
with other people. Our results provide 
evidence illustrating possible transferable 
social skills beyond robot-mediated inter-
actions in naturalistic human interactions.

The present results have multiple clini-
cal implications. Joint attention is the criti-
cal foundation for many higher-level 
social communication skills, including 
reciprocal exchanges and perspective-
taking. Therefore, with improvements 

in joint attention after this intervention, in time, we may see down-
stream effects on other higher-level skills. We did see broader gains 
in the context of the current study, even in this 1-month intervention. 
Future work with larger and longer trials will clarify this promising, 
yet preliminary, result. These results support the potential for robot 
intervention studies in group treatment to facilitate interactions be-
tween peers and to improve both foundational and high-level social 
skills in this context.

The specific developmental growth seen in the children during 
their participation in this study is likely due to our system, as op-
posed to other treatments they received, because the children did 
not show the same magnitude of gains during the pretest phase (just 
the test phase), and the children’s concomitant treatments remained 
stable throughout their participation in the study. The lack of signifi-
cant effects between the first day of the test phase and the end of the 
posttest phase further emphasizes that the improvements are more 
likely due to the intervention components and may deteriorate over 

Fig. 7. Result of caregiver survey. Caregivers reported increased eye contact, increased initiation of communication, and increased response to communication bids 
with them (A) and with other people (B). On the basis of comparisons of ratings from the last day of the robot intervention (T2) to the first day of the intervention (T1), these 
results showed that caregivers were able to observe improved communication abilities of the children beyond our robot-assisted intervention sessions over the period 
of 30 days. Error bars indicate SE.

Fig. 8. Diagram of software components. Our software system consists of several components responsible for at-
tention tracking of the participants, robot behavior control, and intervention presentation. These components to-
gether create rich, engaging interactions for our robot-assisted autism therapy. These components operate within 
the ROS framework.
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time in the absence of continued support. That said, from a clinical 
intervention perspective, our study is an open-label pilot. Future 
studies extending the duration of the study and with randomization with 
appropriate control groups are necessary to verify the gains we have 
observed and attributed to our intervention. In addition, the factors 
associated with long-term preservation of joint attention improve-
ments in ASD remain to be elucidated. Last, future randomized con-
trolled studies will need better control for practice effects of the tasks.

Although our results provide evidence of benefits and the possi-
bility of using robot-assisted autism therapy for clinical intervention, 
limitations of our system motivate future research on the development 
of effective robot-based interventions. In particular, our system relied 
on prespecified interaction content, which included daily opening 
stories and a fixed set of behavioral responses. This approach was 
appropriate for our target scenarios, but it would not scale well for 
interventions that span a longer period of time (e.g., over 30 min 
per day and over 30 days). How to generate coherent, engaging inter-
action content automatically is a core challenge for realizing a long-term, 
autonomous robot-assisted intervention or human-robot interaction 
in general. Second, our intervention personalization was focused on 
adjusting difficulty levels of the practice games, analogous to person-
alization of educational contents in intelligent tutoring systems (ITS). 
Our personalization algorithm was simplistic, although it matched 
the complexity of personalization algorithms successfully used to 
demonstrate learning gains in other ITS systems [e.g., (28)]. More 
complex and detailed modeling of a child’s capabilities would likely 
provide a more substantial impact. Furthermore, to effectively sup-
port the wide variety of behavioral characteristics of individuals with 
ASD, adaptive models that prioritize and personalize needs and pref-
erences in addition to skill performance are necessary to maximize 
the potential of robot-assisted interventions. Third, our system was 
designed to provide targeted interventions, involving interactions 
between the robot, child, and caregiver for about 30 min each day. 
Although this design provided structures for targeted intervention, it 
missed naturalistic intervention opportunities outside of the intended 
sessions. These three limitations necessitate smart, adaptive systems 
that can provide personalized, engaging interventions to children with 
ASD in a variety of situations over long periods of time.

MATERIALS AND METHODS
Objectives and study design
The objectives of this study were to investigate how a social robot 
may deliver behavioral intervention to children with ASD both au-
tonomously and effectively outside clinical settings, as well as how 
such robot-assisted intervention can improve these children’s social-
communicative abilities. This study was modeled after single-subject 
withdrawal (ABA) designs (29, 30). This design included pretest (A), 
test (B), and posttest (A) phases, each phase lasting for about 30 days. 
The pretest phase served as a comparison baseline, capturing possible 
maturation of social communication abilities and the effectiveness 
of any other therapies or interventions that the family may have been 
using. The test phase involved the in-home deployment of a socially 
assistive robot system that engaged the participating child in our inter-
vention program, which was based on intervention activities com-
monly used in clinical settings. The posttest phase sought to explore 
whether the benefits provided by our robot-assisted intervention 
would be sustained after the removal of the system. This study design is 
suitable for investigating the effects of a single intervention and for 

when there are wide variances in participants’ characteristics and 
responses to the intervention. Informed consent from families and 
assent from minors were obtained in all cases, as approved by the 
Yale University Institutional Review Board.

Assessment
To assess a child’s ability to respond to joint attention bids in their 
familiar environments, we used the validated, naturalistic joint 
attention assessment of Bean and Eigsti (31). This assessment includes 
six naturalistic prompts that can be delivered at any point during an 
interaction with the child and is designed particularly for school-age 
children and adolescents. The six prompts examine different aspects 
of joint attention, including gaze following, response to name and a 
greeting opportunity, and recognition of the other person’s current 
interest. This assessment of joint attention was administered four 
times throughout the study while a researcher was interacting with 
a child in play-based activities.

To understand whether a child’s behaviors of social communica-
tion changed over time outside intervention sessions, we asked the 
child’s caregiver to fill out a survey regarding his/her own observa-
tions of the child’s communicative behaviors at the end of each daily 
session. The survey questions sought to measure the broader influence 
of our robot-assisted intervention outside of intervention sessions, 
focusing on the child’s ability to make eye contact with, initiate com-
munication with, and respond to communication bids from the care-
giver and others.

Robot-assisted intervention system
Our intervention system consisted of a social robot, a 24-inch touch 
screen, two external color cameras, and two computers. The social 
robot used was an early prototype of the Jibo robot (32). The Jibo 
robot is a 12-inch table-top robot with three degrees of freedom, 
capable of turning its head and body around 360°. The robot can 
exhibit expressive behaviors through body movements, a ring of color-
changing light-emitting diode lights, and a pair of animated eyes 
(e.g., blinking and dilation). These capabilities allow the robot to make 
eye contact with the participants and signal shared attention. In ad-
dition, the robot can deliver information verbally to the participants 
through its internal speakers. The 24-inch touch screen presented 
educational content and served as a shared medium that the robot 
and the participants could all interact with and reference. One of 
the cameras tracked both the child’s and the caregiver’s attentional 
foci as approximated by head orientations, whereas the other cam-
era recorded the intervention session.

Our software system (Fig. 8), which involved attention tracking and 
intervention presentation, was implemented in the Robot Operating 
System (ROS) framework (33). The attention-tracking subsystem, 
running on one of the computers, continuously approximated users’ 
attentional targets in the environment. With RGB camera stream 
input, the system estimated and tracked head poses and orientations 
by using Constrained Local Model face tracking and landmark detec-
tion algorithms (34) and approximated attentional targets according 
to the estimated head poses and orientations. The intervention pre-
sentation subsystem, running on the other computer, ensured smooth 
delivery of curricular content. It controlled the robot’s behaviors, 
scheduled intervention content, and adjusted difficulty levels of the 
social skills games.

In our implementation, we manually prepared interaction scripts 
that specified predefined behavioral animations for the robot, daily 
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opening stories, and verbal encouragement and feedback to the par-
ticipants. When the robot was not displaying prespecified behaviors 
in a prepared interaction script, it maintained eye contact with the 
child to show engagement. The robot also shared attention with the 
child by looking toward the visual content on the screen from time 
to time throughout each session. These behaviors of making eye 
contact and sharing visual attention were meant to model social gaze 
behaviors for the child.

In addition to targeting the core social skill of joint attention, we 
designed and developed six interactive games that provided opportu-
nities for the child to practice social and emotional understanding, 
perspective-taking, and ordering and sequencing while interact-
ing with the robot and the caregiver. The six games were an emo-
tional understanding game (Story), two barrier games that facilitate 
perspective-taking (House and Rocket), and three ordering and se-
quencing games (Train, Spaceship, and Traveler). Each game in-
volved multiple levels of difficulty, ranging from 1 to 4 to 1 to 8, 
except for Spaceship and Traveler, which have only one difficulty 
setting. Depending on the child’s performance in the game, the 
system adjusted the difficulty level accordingly. As inspired by the 
challenge point theory (22), our personalization module was fo-
cused on delivering learning contents with appropriate levels of 
difficulty to increase learning gains while reducing frustration. The 
personalization module kept track of the child’s performance 
in game activities, providing approximate measures of their abili-
ties of social and emotional understanding, perspective-taking, and 
ordering and sequencing. Using these performance measures, 
the module followed a simple decision tree mechanism to decide 
the difficulty level of the game for the next round of interaction. 
In our implementation, we used 25 and 75% as criteria for de-
creasing and increasing a difficulty level, respectively. Similar ap-
proaches of discrete adaptation have been used in robot-child tutoring 
applications (25, 35, 36).

Social and emotional understanding
The Story game targets the skills of social and emotional under-
standing. A typical example of this game is as follows. The robot 
provides a social situation, displayed as cartoon-like images on the 
touch screen, and asks the child to choose what he/she thinks the 
story character is feeling at different points in the story by selecting 
one of multiple options displayed on the screen. As the child pro-
gresses, the social stories become longer and more complex. To succeed 
in this game, the child needs to understand the social situations and 
emotional states of the characters.

Perspective-taking
Two virtual barrier games, Rocket and House, target the ability of 
taking the other person’s perspective on a joint task. Modeled after 
physical barrier games commonly used in clinical interventions, 
these games provide spatial information to either the child or the 
caregiver and ask them to relay that information to the other verbally. 
In both games, the robot facilitates interactions between the child 
and the caregiver and acts as a game moderator by keeping time and 
providing motivational support. In Rocket, the child and the care-
giver take turns building a rocket ship. The first player builds a 
rocket by dragging modular component parts onto a rocket tem-
plate while the second player looks away. The screen is then reset to 
hide this design, and the first player must explain to the second 
player how to recreate the design. If the two designs are identical, 

then the players have succeeded and win the game. Similarly, in 
House, the child and the robot take turns in the roles of builder and 
guesser. The builder builds a virtual house that is composed of var-
ious designs and materials while the guesser looks away. The game 
then shows six possible designs, one of which was constructed by 
the builder. The guesser then asks questions about whether the 
builder’s house has a particular design or material to guess which of 
the shown designs is the builder’s. These games provide opportunities 
for the child not only to understand that the caregiver or the robot 
has a different perspective but also to practice turn-taking and ver-
bal communication.

Ordering and sequencing
The Train sequencing game targets the skills of ordering and se-
quencing. In this game, the robot instructs the child to build a train 
by dragging parts onto a template. To succeed in this game, the child 
needs to follow the robot’s instructions carefully in sequence. Two 
additional games, Spaceship and Traveler, involve various tasks such 
as sorting objects in order. In an ordering task, the child needs to 
place objects in the right order to complete the task successfully.

Substantial effort was placed into making the system robust and 
easy to use. Before the deployment described in this paper, we con-
ducted multiple pilot tests of the system and the installation process 
in the homes of the research team. We attempted to make the sys-
tem easy for families to use by limiting the startup required to four 
button presses, providing in-home training on the first day, and con-
tinuous system state logging to allow for most troubleshooting to 
require only powering the system off and then on again with no loss 
of data. Multiple efforts were made to minimize disruptions to 
normal operations after installation: Backup power supplies in the 
system base guarded against short power failures; hardware compo-
nents (including the cameras, robots, and tablets) were secured 
in place to the table; and a troubleshooting sheet and a 24/7 techni-
cal support line (via email and phone) were provided to participat-
ing families. Last, the system limited play use to conform to the 
study design; the robot would play games only for one session each 
day and only for a maximum of 30 min.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/3/21/eaat7544/DC1
Movie S1. The robot leads the child and the caregiver into an interactive barrier game in which 
the child builds a rocket and then explains to the caregiver their rocket.
Movie S2. The robot tells a story and asks the child how the main character is feeling at a 
certain point in the story.
Data file S3. Gameplay data set.
Data file S4. Joint attention data set.
Data file S5. Caregiver survey data set.
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